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horseshoe Function to implement the horseshoe shrinkage prior in Bayesian lin-
ear regression

Description

This function employs the algorithm proposed in Bhattacharya et al. (2016). The global-local scale
parameters are updated via a slice sampling scheme given in the online supplement of Polson et
al. (2014). Two different algorithms are used to compute posterior samples of the p ∗ 1 vector of
regression coefficients β. The method proposed in Bhattacharya et al. (2016) is used when p > n,
and the algorithm provided in Rue (2001) is used for the case p <= n. The function includes
options for full hierarchical Bayes versions with hyperpriors on all parameters, or empirical Bayes
versions where some parameters are taken equal to a user-selected value.

Usage

horseshoe(y, X, method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
tau = 1, method.sigma = c("fixed", "Jeffreys"), Sigma2 = 1,
burn = 1000, nmc = 5000, thin = 1, alpha = 0.05)

Arguments

y Response, a n ∗ 1 vector.
X Matrix of covariates, dimension n ∗ p.
method.tau Method for handling τ . Select "truncatedCauchy" for full Bayes with the Cauchy

prior truncated to [1/p, 1], "halfCauchy" for full Bayes with the half-Cauchy
prior, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).

tau Use this argument to pass the (estimated) value of τ in case "fixed" is selected for
method.tau. Not necessary when method.tau is equal to"halfCauchy" or "trun-
catedCauchy". The default (tau = 1) is not suitable for most purposes and should
be replaced.

method.sigma Select "Jeffreys" for full Bayes with Jeffrey’s prior on the error variance σ2, or
"fixed" to use a fixed value (an empirical Bayes estimate, for example).

Sigma2 A fixed value for the error variance σ2. Not necessary when method.sigma is
equal to "Jeffreys". Use this argument to pass the (estimated) value of Sigma2
in case "fixed" is selected for method.sigma. The default (Sigma2 = 1) is not
suitable for most purposes and should be replaced.
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burn Number of burn-in MCMC samples. Default is 1000.
nmc Number of posterior draws to be saved. Default is 5000.
thin Thinning parameter of the chain. Default is 1 (no thinning).
alpha Level for the credible intervals. For example, alpha = 0.05 results in 95% credi-

ble intervals.

Details

The model is:
y = Xβ + ϵ, ϵ ∼ N(0, σ2)

The full Bayes version of the horseshoe, with hyperpriors on both τ and σ2 is:

βj ∼ N(0, σ2λ2
jτ

2)

λj ∼ Half − Cauchy(0, 1), τ ∼ Half − Cauchy(0, 1)

σ2 ∼ 1/σ2

There is an option for a truncated Half-Cauchy prior (truncated to [1/p, 1]) on τ . Empirical Bayes
versions are available as well, where τ and/or σ2 are taken equal to fixed values, possibly estimated
using the data.

Value

BetaHat Posterior mean of Beta, a p by 1 vector.
LeftCI The left bounds of the credible intervals.
RightCI The right bounds of the credible intervals.
BetaMedian Posterior median of Beta, a p by 1 vector.
Sigma2Hat Posterior mean of error variance σ2. If method.sigma = "fixed" is used, this

value will be equal to the user-selected value of Sigma2 passed to the function.
TauHat Posterior mean of global scale parameter tau, a positive scalar. If method.tau =

"fixed" is used, this value will be equal to the user-selected value of tau passed
to the function.

BetaSamples Posterior samples of Beta.
TauSamples Posterior samples of tau.
Sigma2Samples Posterior samples of Sigma2.

References

Bhattacharya A., Chakraborty A., and Mallick B.K (2016), Fast sampling with Gaussian scale-
mixture priors in high-dimensional regression. Biometrika 103(4), 985–991.

Polson, N.G., Scott, J.G. and Windle, J. (2014) The Bayesian Bridge. Journal of Royal Statistical
Society, B, 76(4), 713-733.

Rue, H. (2001). Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63, 325–338.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010), The Horseshoe Estimator for Sparse Signals.
Biometrika 97(2), 465–480.
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See Also

HS.normal.means for a faster version specifically for the sparse normal means problem (design
matrix X equal to identity matrix) and HS.post.mean for a fast way to estimate the posterior mean
in the sparse normal means problem when a value for tau is available.

Examples

## Not run: #In this example, there are no relevant predictors
#20 observations, 30 predictors (betas)
y <- rnorm(20)
X <- matrix(rnorm(20*30) , 20)
res <- horseshoe(y, X, method.tau = "truncatedCauchy", method.sigma = "Jeffreys")

plot(y, X%*%res$BetaHat) #plot predicted values against the observed data
res$TauHat #posterior mean of tau
HS.var.select(res, y, method = "intervals") #selected betas
#Ideally, none of the betas is selected (all zeros)
#Plot the credible intervals
library(Hmisc)
xYplot(Cbind(res$BetaHat, res$LeftCI, res$RightCI) ~ 1:30)

## End(Not run)

## Not run: #The horseshoe applied to the sparse normal means problem
# (note that HS.normal.means is much faster in this case)
X <- diag(100)
beta <- c(rep(0, 80), rep(8, 20))
y <- beta + rnorm(100)
res2 <- horseshoe(y, X, method.tau = "truncatedCauchy", method.sigma = "Jeffreys")
#Plot predicted values against the observed data (signals in blue)
plot(y, X%*%res2$BetaHat, col = c(rep("black", 80), rep("blue", 20)))
res2$TauHat #posterior mean of tau
HS.var.select(res2, y, method = "intervals") #selected betas
#Ideally, the final 20 predictors are selected
#Plot the credible intervals
library(Hmisc)
xYplot(Cbind(res2$BetaHat, res2$LeftCI, res2$RightCI) ~ 1:100)

## End(Not run)

HS.MMLE MMLE for the horseshoe prior for the sparse normal means problem.

Description

Compute the marginal maximum likelihood estimator (MMLE) of tau for the horseshoe for the
normal means problem (i.e. linear regression with the design matrix equal to the identity matrix).
The MMLE is explained and studied in Van der Pas et al. (2016).
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Usage

HS.MMLE(y, Sigma2)

Arguments

y The data, a n ∗ 1 vector.

Sigma2 The variance of the data.

Details

The normal means model is:

yi = βi + ϵi, ϵi ∼ N(0, σ2)

And the horseshoe prior:

βj ∼ N(0, σ2λ2
jτ

2)

λj ∼ Half − Cauchy(0, 1).

This function estimates τ . A plug-in value of σ2 is used.

Value

The MMLE for the parameter tau of the horseshoe.

Note

Requires a minimum of 2 observations. May return an error for vectors of length larger than 400 if
the truth is very sparse. In that case, try HS.normal.means.

References

van der Pas, S.L., Szabo, B., and van der Vaart, A. (2017), Uncertainty quantification for the horse-
shoe (with discussion). Bayesian Analysis 12(4), 1221-1274.

van der Pas, S.L., Szabo, B., and van der Vaart A. (2017), Adaptive posterior contraction rates for
the horseshoe. Electronic Journal of Statistics 10(1), 3196-3225.

See Also

The estimated value of τ can be plugged into HS.post.mean to obtain the posterior mean, and into
HS.post.var to obtain the posterior variance. These functions are all for empirical Bayes; if a
full Bayes version with a hyperprior on τ is preferred, see HS.normal.means for the normal means
problem, or horseshoe for linear regression.
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Examples

## Not run: #Example with 5 signals, rest is noise
truth <- c(rep(0, 95), rep(8, 5))
y <- truth + rnorm(100)
(tau.hat <- HS.MMLE(y, 1)) #returns estimate of tau
plot(y, HS.post.mean(y, tau.hat, 1)) #plot estimates against the data

## End(Not run)
## Not run: #Example where the data variance is estimated first
truth <- c(rep(0, 950), rep(8, 50))
y <- truth + rnorm(100, mean = 0, sd = sqrt(2))
sigma2.hat <- var(y)
(tau.hat <- HS.MMLE(y, sigma2.hat)) #returns estimate of tau
plot(y, HS.post.mean(y, tau.hat, sigma2.hat)) #plot estimates against the data

## End(Not run)

HS.normal.means The horseshoe prior for the sparse normal means problem

Description

Apply the horseshoe prior to the normal means problem (i.e. linear regression with the design
matrix equal to the identity matrix). Computes the posterior mean, median and credible intervals.
There are options for empirical Bayes (estimate of tau and or Sigma2 plugged in) and full Bayes
(truncated or non-truncated half-Cauchy on tau, Jeffrey’s prior on Sigma2). For the full Bayes
version, the truncated half-Cauchy prior is recommended by Van der Pas et al. (2016).

Usage

HS.normal.means(y, method.tau = c("fixed", "truncatedCauchy",
"halfCauchy"), tau = 1, method.sigma = c("fixed", "Jeffreys"),
Sigma2 = 1, burn = 1000, nmc = 5000, alpha = 0.05)

Arguments

y The data. A n ∗ 1 vector.

method.tau Method for handling τ . Select "fixed" to plug in an estimate of tau (empirical
Bayes), "truncatedCauchy" for the half- Cauchy prior truncated to [1/n, 1], or
"halfCauchy" for a non-truncated half-Cauchy prior. The truncated Cauchy prior
is recommended over the non-truncated version.

tau Use this argument to pass the (estimated) value of τ in case "fixed" is selected for
method.tau. Not necessary when method.tau is equal to"halfCauchy" or "trun-
catedCauchy". The function HS.MMLE can be used to compute an estimate of tau.
The default (tau = 1) is not suitable for most purposes and should be replaced.

method.sigma Select "fixed" for a fixed error variance, or "Jeffreys" to use Jeffrey’s prior.
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Sigma2 The variance of the data - only necessary when "fixed" is selected for method.sigma.
The default (Sigma2 = 1) is not suitable for most purposes and should be re-
placed.

burn Number of samples used for burn-in. Default is 1000.

nmc Number of MCMC samples taken after burn-in. Default is 5000.

alpha The level for the credible intervals. E.g. alpha = 0.05 yields 95% credible
intervals

Details

The normal means model is:
yi = βi + ϵi, ϵi ∼ N(0, σ2)

And the horseshoe prior:
βj ∼ N(0, σ2λ2

jτ
2)

λj ∼ Half − Cauchy(0, 1).

Estimates of τ and σ2 may be plugged in (empirical Bayes), or those parameters are equipped with
hyperpriors (full Bayes).

Value

BetaHat The posterior mean (horseshoe estimator) for each of the datapoints.

LeftCI The left bounds of the credible intervals.

RightCI The right bounds of the credible intervals.

BetaMedian Posterior median of Beta, a n by 1 vector.

Sigma2Hat Posterior mean of error variance σ2. If method.sigma = "fixed" is used, this
value will be equal to the user-selected value of Sigma2 passed to the function.

TauHat Posterior mean of global scale parameter tau, a positive scalar. If method.tau =
"fixed" is used, this value will be equal to the user-selected value of tau passed
to the function.

BetaSamples Posterior samples of Beta.

TauSamples Posterior samples of tau.

Sigma2Samples Posterior samples of Sigma2.

References

van der Pas, S.L., Szabo, B., and van der Vaart, A. (2017), Uncertainty quantification for the horse-
shoe (with discussion). Bayesian Analysis 12(4), 1221-1274.

van der Pas, S.L., Szabo, B., and van der Vaart A. (2017), Adaptive posterior contraction rates for
the horseshoe. Electronic Journal of Statistics 10(1), 3196-3225.

See Also

HS.post.mean for a fast way to compute the posterior mean if an estimate of tau is available.
horseshoe for linear regression. HS.var.select to perform variable selection.
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Examples

#Empirical Bayes example with 20 signals, rest is noise
#Posterior mean for the signals is plotted
#And variable selection is performed using the credible intervals
#And the credible intervals are plotted
truth <- c(rep(0, 80), rep(8, 20))
data <- truth + rnorm(100, 1)
tau.hat <- HS.MMLE(data, Sigma2 = 1)
res.HS1 <- HS.normal.means(data, method.tau = "fixed", tau = tau.hat,
method.sigma = "fixed", Sigma2 = 1)
#Plot the posterior mean against the data (signals in blue)
plot(data, res.HS1$BetaHat, col = c(rep("black", 80), rep("blue", 20)))
#Find the selected betas (ideally, the last 20 are equal to 1)
HS.var.select(res.HS1, data, method = "intervals")
#Plot the credible intervals
library(Hmisc)
xYplot(Cbind(res.HS1$BetaHat, res.HS1$LeftCI, res.HS1$RightCI) ~ 1:100)

#Full Bayes example with 20 signals, rest is noise
#Posterior mean for the signals is plotted
#And variable selection is performed using the credible intervals
#And the credible intervals are plotted
truth <- c(rep(0, 80), rep(8, 20))
data <- truth + rnorm(100, 3)
res.HS2 <- HS.normal.means(data, method.tau = "truncatedCauchy", method.sigma = "Jeffreys")
#Plot the posterior mean against the data (signals in blue)
plot(data, res.HS2$BetaHat, col = c(rep("black", 80), rep("blue", 20)))
#Find the selected betas (ideally, the last 20 are equal to 1)
HS.var.select(res.HS2, data, method = "intervals")
#Plot the credible intervals
library(Hmisc)
xYplot(Cbind(res.HS2$BetaHat, res.HS2$LeftCI, res.HS2$RightCI) ~ 1:100)

HS.post.mean Posterior mean for the horseshoe for the normal means problem.

Description

Compute the posterior mean for the horseshoe for the normal means problem (i.e. linear regression
with the design matrix equal to the identity matrix), for a fixed value of tau, without using MCMC,
leading to a quick estimate of the underlying parameters (betas). Details on computation are given
in Carvalho et al. (2010) and Van der Pas et al. (2014).

Usage

HS.post.mean(y, tau, Sigma2 = 1)
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Arguments

y The data. An n ∗ 1 vector.

tau Value for tau. Warning: tau should be greater than 1/450.

Sigma2 The variance of the data.

Details

The normal means model is:
yi = βi + ϵi, ϵi ∼ N(0, σ2)

And the horseshoe prior:
βj ∼ N(0, σ2λ2

jτ
2)

λj ∼ Half − Cauchy(0, 1).

If τ and σ2 are known, the posterior mean can be computed without using MCMC.

Value

The posterior mean (horseshoe estimator) for each of the datapoints.

References

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010), The horseshoe estimator for sparse signals.
Biometrika 97(2), 465–480.

van der Pas, S. L., Kleijn, B. J. K., and van der Vaart, A. W. (2014), The horseshoe estimator: Pos-
terior concentration around nearly black vectors. Electronic Journal of Statistics 8(2), 2585–2618.

See Also

HS.post.var to compute the posterior variance. See HS.normal.means for an implementation that
does use MCMC, and returns credible intervals as well as the posterior mean (and other quantities).
See horseshoe for linear regression.

Examples

#Plot the posterior mean for a range of deterministic values
y <- seq(-5, 5, 0.05)
plot(y, HS.post.mean(y, tau = 0.5, Sigma2 = 1))

#Example with 20 signals, rest is noise
#Posterior mean for the signals is plotted in blue
truth <- c(rep(0, 80), rep(8, 20))
data <- truth + rnorm(100)
tau.example <- HS.MMLE(data, 1)
plot(data, HS.post.mean(data, tau.example, 1),
col = c(rep("black", 80), rep("blue", 20)))
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HS.post.var Posterior variance for the horseshoe for the normal means problem.

Description

Compute the posterior variance for the horseshoe for the normal means problem (i.e. linear regres-
sion with the design matrix equal to the identity matrix), for a fixed value of tau, without using
MCMC. Details on computation are given in Carvalho et al. (2010) and Van der Pas et al. (2014).

Usage

HS.post.var(y, tau, Sigma2)

Arguments

y The data. An n ∗ 1 vector.

tau Value for tau. Tau should be greater than 1/450.

Sigma2 The variance of the data.

Details

The normal means model is:
yi = βi + ϵi, ϵi ∼ N(0, σ2)

And the horseshoe prior:
βj ∼ N(0, σ2λ2

jτ
2)

λj ∼ Half − Cauchy(0, 1).

If τ and σ2 are known, the posterior variance can be computed without using MCMC.

Value

The posterior variance for each of the datapoints.

References

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010), The horseshoe estimator for sparse signals.
Biometrika 97(2), 465–480.

van der Pas, S. L., Kleijn, B. J. K., and van der Vaart, A. W. (2014), The horseshoe estimator: Pos-
terior concentration around nearly black vectors. Electronic Journal of Statistics 8(2), 2585–2618.

See Also

HS.post.mean to compute the posterior mean. See HS.normal.means for an implementation that
does use MCMC, and returns credible intervals as well as the posterior mean (and other quantities).
See horseshoe for linear regression.
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Examples

#Plot the posterior variance for a range of deterministic values
y <- seq(-8, 8, 0.05)
plot(y, HS.post.var(y, tau = 0.05, Sigma2 = 1))

#Example with 20 signals, rest is noise
#Posterior variance for the signals is plotted in blue
#Posterior variance for the noise is plotted in black
truth <- c(rep(0, 80), rep(8, 20))
data <- truth + rnorm(100)
tau.example <- HS.MMLE(data, 1)
plot(data, HS.post.var(data, tau.example, 1),
col = c(rep("black", 80), rep("blue", 20)) )

HS.var.select Variable selection using the horseshoe prior

Description

The function implements two methods to perform variable selection. The first checks whether 0 is
contained in the credible set (see Van der Pas et al. (2016)). The second is only intended for the
sparse normal means problem (regression with identity matrix). It is described in Carvalho et al.
(2010). The horseshoe posterior mean can be written as ciyi, with yi the observation. A variable is
selected if ci ≥ c, where c is a user-specified threshold.

Usage

HS.var.select(hsobject, y, method = c("intervals", "threshold"),
threshold = 0.5)

Arguments

hsobject The outcome from one of the horseshoe functions horseshoe or HS.normal.means.

y The data.

method Use "intervals" to perform variable selection using the credible sets (at the level
specified when creating the hsobject), "threshold" to perform variable selection
using the thresholding procedure (only for the sparse normal means problem).

threshold Threshold for the thresholding procedure. Default is 0.5.

Value

A vector of zeroes and ones. The ones correspond to the selected variables.
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References

van der Pas, S.L., Szabo, B., and van der Vaart, A. (2017), Uncertainty quantification for the horse-
shoe (with discussion). Bayesian Analysis 12(4), 1221-1274.

van der Pas, S.L., Szabo, B., and van der Vaart A. (2017), Adaptive posterior contraction rates for
the horseshoe. Electronic Journal of Statistics 10(1), 3196-3225.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010), The Horseshoe Estimator for Sparse Signals.
Biometrika 97(2), 465–480.

See Also

horseshoe and HS.normal.means to obtain the required hsobject.

Examples

#Example with 20 signals (last 20 entries), rest is noise
truth <- c(rep(0, 80), rep(8, 20))
data <- truth + rnorm(100)
horseshoe.results <- HS.normal.means(data, method.tau = "truncatedCauchy",
method.sigma = "fixed")

#Using credible sets. Ideally, the first 80 entries are equal to 0,
#and the last 20 entries equal to 1.
HS.var.select(horseshoe.results, data, method = "intervals")
#Using thresholding. Ideally, the first 80 entries are equal to 0,
#and the last 20 entries equal to 1.
HS.var.select(horseshoe.results, data, method = "threshold")
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